ETUDE DES EQUILIBRES SOLIDE-LIQUIDE DES SYSTEMES BINAIRES M¹PO₃-LaP₃O₉ (M¹ = Rb, Cs) DONNEES CRISTALLOGRAPHIQUES SUR M¹_xLa(PO₃)_{3+x} (x = 1, 2)

DALILA BEN HASSEN, NAJIA KBIR-ARIGUIB et MELIKA TRABELSI

Laboratoire de Physico-Chimie Minérale, Ecole Normale Supérieure, Centre de Chimie Appliquée, Institut National de la Recherche Scientifique et Technique, 43, Rue de la Liberté, le Bardo, Tunis (Tunisie)

(Reçu le 30 mars 1984)

ABSTRACT

RbPO₃-LaP₃O₉ and CsPO₃-LaP₃O₉ systems have been investigated for the first time by DTA and X-ray diffraction, showing the existence of four new compounds: $M_x^I La(PO_3)_{3+x}$ (M^I = Rb, Cs; x = 1, 2) with incongruent melting.

For RbLa(PO₃)₄ four crystalline forms were found, two with chain structure: γ -RbLa(PO₃)₄ (a = 10.592(6); b = 9.089(2); c = 10.940(2) Å; $\beta = 105.83(3)^{\circ}$; $P2_1/n$; Z = 4); β -RbLa(PO₃)₄ (a = 8.815(2); b = 9.331(4); c = 7.187(4) Å; $\beta = 99.72(3)^{\circ}$; $P2_1$; Z = 2); and the other with a cyclic structure: δ -RbLaP₄O₁₂ (a = 15.302(6) Å; $I\bar{4}3d$; Z = 12); α -RbLaP₄O₁₂ (a = 7.955(2); b = 12.842(2); c = 10.919(1) Å; $\beta = 112.33(2)^{\circ}$; C2/c; Z = 4).

The compound CsLa(PO₃)₄ presents three crystalline forms: two with chain structure: γ -CsLa(PO₃)₄ (a = 10.664(3); b = 9.264(4); c = 11.265(7) Å; $\beta = 106.08(5)^{\circ}$; $P2_1/n$; Z = 4); β -CsLa(PO₃)₄ (a = 8.878(5); b = 9.290(5); c = 7.249(6) Å; $\beta = 98.75(8)^{\circ}$; $P2_1$; Z = 2); and the other with a cyclic structure: δ -CsLaP₄O₁₂ (a = 15.382(5) Å; $I\overline{43}d$; Z = 12).

The compound $\text{Rb}_2\text{La}(\text{PO}_3)_5$ has a triclinic unit cell with parameters a = 7.259(2); b = 13.363(8); c = 7.260(2) Å; $\alpha = 90.30(2)^\circ$, $\beta = 107.40(3)^\circ$, $\gamma = 89.90(1)^\circ$; P1; Z = 2.

The method of preparation of all these compounds, powder diagrams and IR absorption spectra are given.

RESUME

Les diagrammes d'équilibre $M^1PO_3 - LaP_3O_9$ ($M^1 = Rb$, Cs), que nous avons établi par micro-analyse thermique différentielle, montrent l'existence de quatres composés définis nouveaux à fusion non congruente du type $M_x^1La(PO_3)_{3+x}$ ($M^1 = Rb$, Cs; x = 1, 2).

Le composé RbLa(PO₃)₄ cristallise dans quatres formes cristallines, dont les paramètres de maille sont déterminés, la forme cubique: δ -RbLa P₄O₁₂ (a = 15,302(6) Å; $I\overline{43}d$; Z = 12); les formes monocliniques: γ -RbLa(PO₃)₄ (a = 10,592(6), b = 9,089(2), c = 10,940(2) Å; $\beta = 105,83(3)^{\circ}$; $P2_1/n$; Z = 4). β -RbLa(PO₃)₄ (a = 8,815(2), b = 9,331(4), c = 7,187(4) Å; $\beta = 99,72(3)^{\circ}$; $P2_1$; Z = 2). α -RbLaP₄O₁₂ (a = 7,955(2), b = 12,842(2), c = 10,919(1) Å; $\beta = 112,33(2)^{\circ}$; C2/c; Z = 4).

Le composé CsLa(PO₃)₄ présente trois formes cristallines dont les paramètres de mailles ont été déterminés, la forme cubique: δ -CsLaP₄O₁₂ (a = 15,382(5) Å; $I\bar{4}3d$; Z = 12); les formes monocliniques: γ -CsLa(PO₃)₄ (a = 10,664(3); b = 9,264(4); c = 11,265(7) Å; $\beta =$ 106,08(5)°; $P2_1/n$; Z = 4). β -CsLa(PO₃)₄ (a = 8,878(5); b = 9,290(5); c = 7,249(6) Å; $\beta = 98,75(8)$ °; $P2_1$; Z = 2).

Le composé $\text{Rb}_2 \text{La}(\text{PO}_3)_5$ dont les paramètres de maille sont: a = 7,259(2); b = 13,363(8); c = 7, 260(2) Å; $\alpha = 90,30(2)^\circ$; $\beta = 107,40(3)^\circ$; $\gamma = 89,90(1)^\circ$; dont le groupe d'espace est P1, Z = 2, est isotype du composé homologue (NH₄)₂La(PO₃)₅.

Les spectres d'absorption IR des composés $Rb_2 La(PO_3)_5$, γ -RbLa(PO₃)₄, β -RbLa(PO₃)₄, γ -CsLa(PO₃)₄ et β -CsLa(PO₃)₄, suggèrent une structure en chaîne. Par contre, les composés δ -RbLaP₄O₁₂, α -RbLaP₄O₁₂ et δ -CsLaP₄O₁₂ présentent une structure cyclique pour l'arrangement des groupements phosphatés.

Les méthodes de synthèse et les conditions de formation de ces différents composés sont décrites.

INTRODUCTION

Durant la dernière décennie, les différentes études menées [1-5] sur les polyphosphates contenant des éléments lanthanides et des éléments monovalents ont permis de mettre en évidence pour certains d'entre eux des propriétés physiques intéressantes telles que l'émission laser, la conduction ionique, le ferromagnétisme, etc.

Aussi est-il permis d'espérer qu'en multipliant par synthèse les combinaisons possibles pour des polyphosphates de ce type, d'obtenir des composés à haute valeur ajoutée.

Une étude systématique des phosphates mixtes apparaissant dans les systèmes du type $M^{I}PO_{3}$ -LaP₃O₉ (M^{I} = Li [6]; Na [7]; K [8]; Rb; Cs; Ag [9]; Tl [10]) a été entreprise dans notre laboratoire en vue de caractériser des sels mixtes de lanthane et de métaux monovalents.

Dans le présent travail, nous décrivons les résultats obtenus à la suite de l'établissement des deux diagrammes d'équilibre $RbPO_3-LaP_3O_9$ et $CsPO_3-LaP_3O_9$.

TECHNIQUES EXPERIMENTALES

Les diagrammes ont été établis par micro-analyse thermique différentielle en montée de température, suivant la méthode de Mazières [11], à l'aide d'un micro-analyseur Setaram M5.

La formation de verre lors de la solidification ne permet pas de vérifier les accidents thermiques en opérant par descente de température. La vitesse de chauffe est 10 K min⁻¹.

Les échantillons utilisés, de l'ordre de 15 mg, sont des mélanges pris dans différentes proportions, de métaphosphate de lanthane et de polyphosphate de rubidium ou de polyphosphate de cesium.

La composition, variant de 0 à 100%, est exprimée en moles de LaP₃O₉.

Les mélanges, calcinés durant plusieurs jours à 923 K dans la zone riche en LaP₃O₉ et à 873 K dans la zone riche en RbPO₃ ou CsPO₃, sont fréquemment homogénéisés par broyage. Lors de la détermination des courbes d'analyse thermique différentielle, les échantillons sont placés dans des creusets en Pt et Al_2O_3 (α) est choisi comme témoin.

Nous avons utilisé un thermocouple Pt/Platinel pour détecter les accidents thermiques survenant à des températures inférieures à 1273 K et un thermocouple Pt/Pt-Rh pour les températures supérieures à 1273 K. La précision des températures est 5 K jusqu'à 1273 et 10 K pour les températures supérieures.

La diffraction des rayons-X par les poudres, a été utilisée pour identifier les espèces solides nouvelles ou déjà connues et les phases solides en équilibre dans les domaines où elles existent.

Les spectres de diffraction des rayons-X des composés nouveaux sont enregistrés à vitesse lente $(1/8^{\circ} \theta \min^{-1})$ sur un diffractomètre Philips-Norelco utilisant la longueur d'onde du cuivre K_{α} .

Les spectres d'absorption IR sont enregistrés à l'aide d'un spectrophotomètre Perkin-Elmer IR-225 sur des échantillons en pastille dans KBr.

PRODUITS UTILISES

L'étude des systèmes $M^{I}PO_{3}-LaP_{3}O_{9}$ ($M^{I}=Rb$, Cs) a nécessité la préparation des polyphosphates de rubidium et de cesium et du métaphosphate de lanthane.

Le composé $RbPO_3$ est préparé [12] à partir du carbonate de rubidium et d'orthophosphate diammonique, selon le schéma réactionnel suivant

 $Rb_2CO_3 + 2 (NH_4)_2HPO_4 \rightarrow 2 RbPO_3 + CO_2 + 4 NH_3 + 3 H_2O$

Les réactifs sont chauffés, d'abord à 473 K, puis, après dégagement de l'eau et du gaz formé, le produit est soumis à une cuisson pendant trois jours à 923 K.

Le schéma réactionnel utilisé pour la préparation du composé CsPO₃ est le même que pour RbPO₃. Le mélange de réactifs, en proportions stoechiométriques, est porté à 473 K pendant trois heures environ, puis à 923 K pendant une semaine.

Le composé LaP_3O_9 est obtenu par déshydratation de $LaP_3O_9 \cdot 3H_2O$, préparé selon la méthode de Serra et Giesbrecht [13]. Une solution N/10 en trimétaphosphate de sodium est mélangée avec une solution N/10 en La Cl_3 . La précipitation du métaphosphate de lanthane s'observe après quelques minutes d'agitation. Après filtration et lavage, le précipité est séché au dessiccateur.

Une étude [9] par ATD et analyse thermogravimétrique montre que la fusion de LaP₃O₉ s'accompagne d'une légère décomposition qui a lieu selon

Fig. 1. Diagramme d'équilibre du système RbPO₃-LaP₃O₉. (I) Liquide; (II) liquide + LaP₃O₉; (III) liquide + RbLa(PO₃)₄; (IV) liquide + RbPO₃; (V) liquide + Rb₂La(PO₃)₅; (VI) α RbPO₃ + Rb₂La(PO₃)₅; (VII) Rb₂La(PO₃)₅; (VII) Rb₂La(PO₃)₅; (IX) β RbPO₃ + Rb₂La(PO₃)₅.

Fig. 2. Diagramme d'équilibre du système CsPO₃-LaP₃O₉. (I) Liquide; (II) liquide + LaP₃O₉; (III) liquide + CsLa(PO₃)₄; (IV) liquide + CsPO₃; (V) liquide + Cs₂La(PO₃)₅; (VI) α CsPO₃ + Cs₂La(PO₃)₅; (VII) Cs₂La(PO₃)₅ + CsLa(PO₃)₄; (VIII) CsLa(PO₃)₄ + LaP₃O₉; (IX) β CsPO₃ + Cs₂La(PO₃)₅.

la réaction

 $LaP_3O_9 \stackrel{T=1523 \text{ K}}{\leftrightarrows} LaPO_4 + P_2O_5$

RESULTATS EXPERIMENTAUX ET DISCUSSION

Etude du système $RbPO_3$ -LaP $_3O_9$

Le diagramme d'équilibre du système $RbPO_3-LaP_3O_9$ représenté sur la Fig. 1 met en évidence deux composés définis à fusion incongruente $RbLa(PO_3)_4$ et $Rb_2La(PO_3)_5$ correspondant respectivement aux compositions 50 et 33% molaire en LaP₃O₉.

Le composé $RbLa(PO_3)_4$ se décompose à 1188 K suivant la réaction péritectique

 $RbLa(PO_3)_4 \rightarrow LaP_3O_9 + liquide$

 $Rb_2La(PO_3)_5$ se décomposé à 1057 K suivant la réaction péritectique $Rb_2La(PO_3)_5 \rightarrow RbLa(PO_3)_4 + liquide$

Le mélange eutectique à 10% en LaP₃O₉ fond à 971 K. La transformation allotropique du polyphosphate de rubidium [14] est observée à 693 K.

Etude du système CsPO₃-LaP₃O₉

Le diagramme d'équilibre de ce système, dont la représentation graphique est donnée dans la Fig. 2, est très semblable par son allure générale au diagramme d'équilibre précédent.

Le composé apparaissant à la composition 33% molaire en LaP₃O₉ correspond à la formule brute $Cs_2La(PO_3)_5$, et se décompose à la température péritectique 1098 K. Le composé de formule brute $CsLa(PO_3)_4$ se décompose à la température péritectique 1198 K. Le mélange eutectique correspon-

TABLEAU 1

Principales caractéristiques thermiques du diagramme RbPO3-LaP3O9

	% Molaire	% Molaire	<i>T</i> (K)
	RbPO ₃	$LaP_{3}O_{9}$	
Fusion de RbPO ₃	100	0	1068
Palier eutectique	90	10	971
Début du premier palier péritectique	75	25	1057
Décomposition de $Rb_2La(PO_3)_5$	66	33	1057
Début du deuxième palier péritectique	63	37	1188
Décomposition de RbLa(PO ₃) ₄	50	50	1188
Fusion de LaP_3O_9	0	100	1523

256

Principales caractéristiques thermiques du diagramme CsPO₃-LaP₃O₉

	% Molaire CsPO ₃	% Molaire LaP ₃ O ₉	<i>T</i> (K)
Fusion de CsPO ₃	100	0	1004
Palier eutectique	90	10	918
Début du premier palier péritectique	71	29	1098
Decomposition de $Cs_2 La(PO_3)_5$	66	33	1098
Début du deuxième palier péritectique	62	38	1198
Décomposition de CsLa(PO_3) ₄	50	50	1198
Fusion de LaP ₃ O ₉	0	100	1523

dant à la composition 10% en LaP_3O_9 fond à 918 K. Le palier observé à 773K correspond à la transformation allotropique [15]

$\alpha CsPO_3 \Leftrightarrow \beta CsPO_3$

Les Tableaux 1 et 2 groupent les principales caractéristiques des deux diagrammes d'équilibres.

Préparation des composés intermédiaires

D'une façon générale, les poudres microcristallines des composés du type $M_x^I La(PO_3)_{3+x}$ ont pu être obtenues de deux façons.

Méthode I, méthode directe

La calcination d'un mélange de polyphosphate d'un cation monovalent et d'un métaphosphate de lanthane en proportion stoechiométrique, permet d'obtenir le composé $M_x^1 La(PO_3)_{3+x}$ selon le schéma réactionnel

$$x \mathbf{M}^{\mathsf{I}} \mathbf{PO}_3 + \mathbf{LaP}_3 \mathbf{O}_9 \xrightarrow{T} \mathbf{M}_x^{\mathsf{I}} \mathbf{La}(\mathbf{PO}_3)_{3+x}$$

La durée du traitement thermique est variable selon les composés à préparer.

Méthode II, méthode de double décomposition

Les composés définis du type $M_x^1 La(PO_3)_{3+x}$ peuvent être également préparés sous forme de poudre cristalline à partir d'un mélange stoechiométrique de phosphate diammonique, d'oxyde de lanthane et de carbonate de cation monovalent selon la réaction suivante

$$xM_{2}^{1}CO_{3} + La_{2}O_{3} + 2(3 + x)(NH_{4})_{2}HPO_{4}$$

 $\rightarrow 2M_{x}^{1}La(PO_{3})_{3+x} + 4(3 + x)NH_{3} + 3(3 + x)H_{2}O + xCO_{2}$

Méthode III, préparation de monocristaux

Des échantillons monocristallins des composés M¹La(PO₃)₄ ont pu être

Données cristallographiques de phosphates condensés mixte lanthane-rubidium et lanthane-césium

Composés	Groupe d'espace	a (Å)	b (Å)	c (Å)	β°	Ζ	Structure
$\overline{\alpha}$ -RbLaP ₄ O ₁₂	C2/c	7,955(2)	12,842(2)	10,919(1)	112,33(2)	4	cyclique
β -RbLa(PO ₃) ₄	P21	8,815(2)	9,331(4)	7,187(4)	99,72(3)	2	en chaîne
γ -RbLa(PO ₃) ₄	$P2_1/n$	10,592(6)	9,089(2)	10,940(2)	105,83(3)	4	en chaîne
δ-RbLaP ₄ O ₁₂	I43d	15,302(6)	15,302(6)	15,302(6)	90	12	cyclique
$Rb_2 La(PO_3)_5^{a}$	P1	7,259(2)	13,363(8)	7,260(2)	107,40(3)	2	en chaîne
β -CsLa(PO ₃) ₄	P21	8,878(5)	9,290(5)	7,249(6)	98,75(8)	2	en chaîne
γ -CsLa(PO ₃) ₄	$P2_1/n$	10,664(3)	9,264(4)	11,265(7)	106,08(5)	4	en chaîne
δ -CsLaP ₄ O ₁₂	I 4 3d	15,382(5)	15,382(5)	15,382(5)	90	12	cyclique

^a Pour ce composé $\alpha = 90,30(2)^{\circ}$; $\gamma = 89,90(1)^{\circ}$.

préparés à partir d'une solution d'acide phosphorique à 85%, de carbonate du cation monovalent et d'oxyde de lanthane. La formation du composé $M^{1}La(PO_{3})_{4}$ dépend de la température à laquelle on porte la solution et des concentrations relatives de carbonate et d'oxyde de lanthane.

Dépouillement d'un diagramme de diffraction des rayons-X de δ -RbLaP₄O₁₂($I\overline{4}3d$)

hkl	d _{cal.} (Å)	d _{obs.} (Å)	I/I_0	hkl	$d_{\rm cal.}$ (Å)	d _{obs.} (Å)	I/I_0
110	10,82			620	2,419	2,419	4
200	7,65			541	2,361	2,361	6
211	6,25	6,25	27	622	2,307		
220	5,41	5,41	12	631	2,256	2,256	16
310	4,84			444	2,208	2,208	12
222	4,42			534	2164	2164	
321	4,09	4,09	100	710	2,164	2,164	0
400	3,82	3,82	35	640	2,122	2,121	3
411	2.41			633			•••
330	3,61			721	2,082	2,082	20
420	3,42	3,42	13	642	2,045	2,044	5
332	3,26	3,26	13	730	2,009	2,009	2
422	3,12	3,12	8	732	1,943	1,944	15
431	2 001	3,000	66	800	1,913	1,913	7
510	3,001			811	1,883		
521	2,794	2,793	40	741			
440	2,705	2,705	8	820	1.055		
530	2 (2 4	2,624	8	644	1,855		
433	2,624			563	1,829	1,829	7
600	2 550			822	1,803	1,803	2
442	2,550						
611	2 492	7 492	12				
532	2,482	2,483	13				

TABLEAU 5

Dépouillement d'un diagramme de diffraction des rayons-X de γ -RbLa(PO₃)₄(P2₁/n)

hki	$d_{\rm cal.}$ (Å)	d _{obs.} (Å)	I/I_0	hkl	d _{cal.} (Å)	$d_{\text{obs.}}(\text{\AA})$	I/I_0
<u>1</u> 01	8,58	8,57	20	122	3,09	2.00	20
011	6,88	6,88	5	312	3,09	5.09	20
110	6,78			103	3,07	3.07	10
101	6,49	6,49	5	221	3,07	5,07	10
Ī11	6,24	6,24	16	212	3,05	3,05	15
111	5,28	5,28	16	301	3,002		
002	5,26	5,25	20	031	2,911	2,911	10
200	5,09			113	2,908		
1 12	4,58	4,58	8	130	2,904		
012	4,55	4 55	8	303	2,861	2,861	40
020	4,54	4,55	0	ī31	2,857	2,857	20
2 11	4,49			311	2,850	2,850	15
210	4,44			123	2,839	2,839	10
2 02	4,29	4,29	100	321	2,786	2,786	10
021	4,17	·		023	2,777		
120	4,15			131	2,745	2,745	15
121	4,01	4,02	11	313	2,729	2,729	10
212	3,88			320	2,720		
112	3,83			223	2,695	2,695	8
211	3,78	3,78	5	322	2,666		
121	3,72	3,72	10	204	2,651		
ī 03	3,63	3,63	30	222	2,641		
3 01	3,52	3,53	16	004	2,631	2,631	8
ī22	3,45	2.45	(0)	032	2,625	2,625	10
022	3,44	3,45	00	ī14	2,619		
2 21	3,41			2 31	2,614		
220	3,39	3,39	26	2 30	2,604	2,604	10
ī13	3,37	·		4 02	2,586		
311	3.29	3.29	10	400	2.547	2,547	8
013	3.27			2 14	2.545	,	
202	3,24	3,24	30	123	2,543		
310	3,18	3,18	5	4 11	2,541		
<u>2</u> 13	3.14	3.14	10	014	2.527	2.527	12
222	3,12	3,12	11				

Lors de la préparation des composés $M^{1}La(PO_{3})_{4}$ nous avons remarqué que les spectres de diffraction-X du produit obtenus par les méthodes I, II, III sont différents, et également pour une même méthode, la nature du diffractogramme de poudre est variable.

Toutefois la comparaison de ces diffractogrammes avec d'une part ceux de RbNd(PO₃)₄ dont deux variétés cristallines sont connues à savoir la variété α [16] et la variété γ [17] et d'autre part ceux de CsNd(PO₃)₄ dont trois variétés

cristallines sont connues à savoir la variété β [18], la variété γ [19] et la variété δ [20], nous a permis d'envisager l'existence de plusieurs variétés cristallines de la même espèce chimique $M^{1}La(PO_{3})_{4}$. La maîtrise des paramètres de préparation de ce composé nous a permis

IABLEAU 0

Dépouillement d'un diagramme	de diffraction des rayons-X	$(de \beta - RbLa(PO_3)_4 (P2_1))$
------------------------------	-----------------------------	-------------------------------------

hkl	d _{cal.} (Å)	$\overline{d_{\text{obs.}}(\text{\AA})}$	I/I_0	hkl	$d_{\text{cal.}}(\text{\AA})$	$d_{\rm obs}$ (Å)	I/I_0
100	8,69	8,69	20	131	2,653		
001	7,08	7,08	10	122	2,583		
110	6,36	6,34	10	202	2,543	2,543	6
1 01	6,01			301	2,535		
011	5,64	5,64	6	230	2,529		
101	5,08			222	2,526		
ī11	5,05	5,05	6	320	2,460	2,460	15
020	4,66			231	2,459	2,459	10
111	4,46			302	2,454	2 454	6
200	4,34	4,34	100	212	2,453	2,707	Ū
120	4,11	4,11	50	311	2,446		
201	4,02	4,02	48	321	2,435		
210	3,94			ī 03	2,383		
021	3,89	3,89	10	312	2,373	2,373	6
2 11	3,69	3,70	10	003	2,361		
ī21	3,68	3,68	10	032	2,337		
002	3,54	3,55	30	040	2,332		
ī 02	3,49	3,49	35	ī 32	2,323		
201	3,45	3,45	15	231	2,311	2,311	8
121	3,44	3,44	17	ī13	2,308	2,308	6
012	3,31			013	2,289		
ī12	3,27	3,27	12	140	2,253		
211	3,238			203	2,239		
220	3,179	3,179	6	222	2,232		
102	3,102			321	2,227		
221	3,044	3,044	10	041	2,215	2,215	5
202	3,005	3,006	15	132	2,196		
112	2,943	2,942	6	103	2,187		
130	2,928			401	2,182		
300	2,896	2,900	15	213	2,177		
212	2,860	2,861	16	141	2,175		
031	2,848	2,848	10	322	2,172		
022	2,821	2,821	10				
ī22	2,796						
221	2,775	2,775	15				
310	2,766						
131	2,762						
311	2,730	2,730	12				

TABLEAU 7

Dépouillement d'un diagramme de diffraction des rayons-X de α -RbLaP₄O₁₂(C2/c)

hkl	d _{calc.} (Å)	$d_{obs.}$ (Å)	I/I_0	hkl	$d_{\text{calc.}}(\text{\AA})$	d _{obs.} (Å)	I/I_0
111	6,44	6,44	20	222	2,369	2,368	20
020	6,42			024	2,350		
110	6,38	6,38	30	043	2,323	2,323	10
021	5,42	5,43	30	ī52	2,301	2,301	10
002	5,05	5,05	5	ī 34	2,300		
1 12	4,80			151	2,293		
111	4,74	4,74	55	133	2,282	2,281	10
022	3,97	3,97	8	2 43	2,248	2,247	15
2 02	3,72	3,72	30	332	2,243		
ī31	3,71	3,71	30	331	2,236	2,236	17
130	3,70			241	2,229		
200	3,68	3,68	75	314	2,201		
ī 13	3,49	3,49	60	311	2,168	2,168	12
112	3,44	3,45	12	333	2,147		
2 21	3,38	3,37	15	060	2.140	2,142	15
ī 32	3.30	3,30	25	ī15	2.139	,	
131	3,28	3,28	100	330	2,128	2,128	45
2 22	3,22	3,22	40	114	2,121	2,121	20
040	3.21			ī53	2.096	2.096	17
220	3,19	3,19	55	061	2,094	2,093	10
041	3,06	3,06	12	152	2,086	,	
023	2,982			2 25	2,037	2,037	10
2 23	2,828	2,830	8	244	2,016		
221	2,791	2,791	20	223	2,009		
133	2,767	2,767	20	242	1,996	1,996	12
132	2,745	2,745	20	4 02	1,988		
042	2,709	2,709	15	044	1,985	1,985	14
ī14	2,668			334	1,980		
113	2,640	2,639	12	062	1,970		
2 04	2,591			331	1,956		
312	2,581			315	1,946		
311	2,570	2,571	22	ī35	1,935	1,935	5
202	2,548	2,548	12	025	1,927		
004	2,525	2,525	15	134	1,922		
2 41	2,498	2,499	10	312	1,914	1,914	7
313	2,436	2,435	32	4 22	1,899		
2 42	2,431			2 61	1,885	1,885	30
ī51	2,428			4 23	1,872		
150	2,425			ī54	1,870		
240	2,419			4 21	1,861	1,861	15
310	2,409	2,409	20	4 04	1,861	-	
2 24	2,403	<u>,</u>		153	1,860		
-				262	1.855	1.856	10

Dépouillement d'un diagramme de diffraction des rayons-X de $Rb_2La(PO_3)_5(P_1)$

hk!	d _{calc.} (Å)	d _{obs.} (Å)	<i>I/I</i> ₀	hk!	$d_{\text{calc.}}(\text{\AA})$	$d_{\rm obs.}$ (Å)	<i>I/I</i> ₀
001	6,93						
100	6,93	6,93	10	221	3,139		
020	6,68	6,68	8	$2\overline{2}\overline{1}$	3,132		
011	6,16			122	3,129		
110	6,15			131	3,097		
110	6,15	6,14	10	131	3,088		
011	6,14			022	3,081		
101	5,85			220	3,075	3,076	11
111	5,37	5,36	15	220	3,074		
111	5,35			022	3,069		
021	4,82	4,82	17	041	3,015	3,017	16
120	4,81	4,81	17	1 40	3,009		
120	4,81			140	3,009		
021	4,80			041	3,003		
030	4,45			202	2,925	2,930	14
121	4,41			141	2,906		
$1\overline{2}\overline{1}$	4,39			141	2,896		
101	4,30	4,30	8	212	2,860		
111	4,09			212	2,855		
111	4,09			132	2,784		
031	3,75	3,76	5	102	2,783	2,786	30
130	3,75			201	2,783		
031	3,74			231	2,780		
121	3,62	3,62	30	231	2,773		
121	3,61			132	2,770		
102	3,55			032	2,741	2 722	20
201	3,55	3,55	52	230	2,734	2,752	50
131	3,55			230	2,734		
131	3,54			032	2,728		
002	3,46			112	2,727		
200	3,46			211	2,725		
112	3,44	3,44	75	211	2,723		
211	3,43			112	2,722		
211	3,43			222	2,684	2,688	8
112	3,43			222	2,675		
012	3,36	3,36	100	050	2,672		
210	3,35			141	2,641	2,649	15
210	3,35			141	2,633		
012	3,349			122	2,572		
040	3,341			221	2,570		
122	3,143	3,145	14	221	2,567		
				122	2,565		
				051	2,497	2,495	5

hkl	d _{calc.} (Å)	$d_{\rm obs}({\rm \AA})$	I/I_0	hkl	d _{calc.} (Å)	d _{obs.} (Å)	I/I_0
150	2,493			133	2,130		
150	2,493			331	2,127	2,126	14
232	2,440			331	2,123		
142	2,440			160	2,120	2,119	14
241	2,437	2,437	13	061	2,117		
15ī	2,435			161	2,078		
123	2,278	2,277	16	033	2,054	2,058	14
013	2,277			330	2,050	2,052	22
310	2,275			330	2,050		
321	2,275			233	2,010		
310	2,275			113	1,996	1,996	12
123	2,270			311	1,995		
151	2,266	2,265	10	311	1,994		
203	2,258			113	1,993		
202	2,149			161	1,980	1,979	10
223	2,142	2,145	25	252	1,977		
142	2,142						

TABLEAU 8 (continué)

de mettre en évidence quatre variétés α , β , γ , δ pour le composé RbLa(PO₃)₄ et trois variétés β , γ , δ pour le composé CsLa(PO₃)₄ dont nous allons préciser dans ce qui suit les modes de préparation.

δ -RbLaP₄O₁₂

La variété δ -RbLaP₄O₁₂ a pu être préparé à l'état pulvérulent par la méthode II. La température de recuit est 573 K pendant plusieurs jours.

γ -RbLa(PO₃)₄

La variété γ -RbLa(PO₃)₄ est obtenu par la méthode I. Le mélange est porté progressivement à 473 K, il est ensuite maintenu à cette température durant 5 h. Après un broyage d'homogénéisation il est porté à 573 K pendant un jour, ensuite à 673 K pendant deux jours.

β -RbLa(PO₃)₄

La variété β -RbLa(PO₃)₄ est obtenu après recuit d'un jour de la phase γ -RbLa(PO₃)₄ à 773 K.

α -RbLaP₄O₁₂

La variété α -RbLaP₄O₁₂ semble être la plus stable. Elle a pu être obtenue par les trois méthodes déjà décrites. La température de recuit pour les méthodes I et II est 973 K pendant plusieurs jours. En ce qui concerne la méthode III la solution est calcinée à 473 K pendant un jour puis à 623 K pendant 15 jours. Les proportions molaires de La/Rb/P sont: 1:14:45.

δ -CsLaP₄O₁₂

La phase δ -CsLaP₄O₁₂ a pu être obtenue par la méthode I et II, la température de recuit est 573 K.

γ -CsLa(PO₃)₄

La phase γ -CsLa(PO₃)₄ a pu être isolée par la méthode III, la solution est calcinée à 473 K pendant un jour puis à 573 K pendant 15 jours. Les proportions molaires de La/Cs/P sont: 2:3:45.

TABLEAU 9

Dépouillement d'un diagramme de diffraction des rayons-X de β -CsLa(PO₃)₄(P2₁)

hkl	d _{cal.} (Å)	d _{obs.} (Å)	I/I_0	hkl	$d_{\rm cal.}({\rm \AA})$	d _{obs.} (Å)	I/I_0
100	8,77	8,77	30	130	2,920	2,920	26
001	7,16	7,16	10	301	2,865	2,865	20
110	6,38	6,38	30	212	2,862		
1 01	6,01			031	2,842		
011	5,67	5,67	35	022	2,837	2,837	15
101	5,17			221	2,801		
111	5,05	5,05	10	ī22	2,800		
020	4,64	4,64	18	310	2,790	2,790	25
111	4,52	4,51	24	ī31	2,753		
200	4,39	4,39	100	311	2,737	2,737	16
120	4,10	4,10	30	131	2,657	2,651	6
2 01	4,02	4,03	70	122	2,608		
210	3,97	3,96	10	202	2,588		
021	3,90	3,89	25	301	2,574		
2 11	3,69	3,69	40	230	2,530		
ī 21	3,67	3,67	20	222	2,525	2,525	14
002	3,58	3,57	25	212	2,483		
201	3,51	3,51	30	311	2,481		
ī 02	3,51	3,50	75	320	2,475	2,474	26
121	3,46	3,46	65	302	2,456		
012	3,34	3,34	10	231	2,454		
211	3,28	3,28	35	321	2,438		
1 12	3,28	3,27	14	103	2,399		
220	3,19	3,19	10	003	2,388		
102	3,15			312	2,374		
2 21	3,041	3,04	8	032	2,343		
2 02	3,008	3,01	25	ī13	2,322	2,322	24
112	2,985			231	2,322	•	
300	2,925			ī32	2,321		

264

β -CsLa(PO₃)₄

La phase β -CsLa(PO₃)₄ est obtenue par calcination de la phase δ à 1023 K pendant plusieurs jours.

Le composé à 33% molaire en LaP₃O₉ de formule $Rb_2La(PO_3)_5$ présente une seule forme cristalline. Elle a pu être isolée par la méthode I et II. La température de recuit est 973 K.

Ce composé est isotype du composé homologue (NH₄)₂La(PO₃)₅ [8].

Nous n'avons pas réussi à isolé le composé $Cs_2La(PO_3)_5$ ni à maîtriser les paramètres expérimentaux dont dépend la réaction de formation de ce composé.

hkl	$d_{\text{cal.}}(\text{\AA})$	d _{obs.} (Å)	<i>I/I</i> ₀	hkl	$d_{\text{cal.}}(\text{\AA})$	d _{obs.} (Å)	I/I_0
ī01	8,75	8,75	9	221	3,46	3,46	30
011	7,04	7,04	12	220	3,43	3,43	100
110	6,87			013	3,36		
101	6,58	6,57	15	311	3,31	3,31	30
ī11	6,36	6,36	20	202	3,29	3,29	45
002	5,41	5,41	15	2 13	3,22	3,22	15
111	5,37	5,37	66	310	3,20		
200	5,12	5,12	10	222	3,180	3,18	10
1 12	4,70			122	3,158		
012	4,67	4,67	12	103	3,141	3,140	24
020	4,63	4,63	21	312	3,138		
211	4,55	4,55	6	221	3,112		
210	4,48			212	3,103	3,102	60
2 02	4,37	4,37	45	301	3,025	3,025	10
021	4,26			113	2,975		
120	4,22			031	2,969		
121	4,09	4,09	30	130	2,956	2,956	12
2 12	3,95			303	2,916		
112	3,91			ī 31	2,912	2,912	30
211	3,83	3,81	15	123	2,911		
121	3,79	3,78	15	311	2,876		
ī 03	3,74	3,74	24	023	2,846	2,846	· 10
301	3,55	3,55	45	321	2,818	2,818	17
ī22	3,53			131	2,796		
022	3,52	3,52	45	313	2,782	2,782	15
ī13	3,47	3,47	15	2 23	2,757		

Dépouillement d'un diagramme de diffraction des rayons-X de γ -CsLa(PO₃)₄(P2₁/n)

 $d_{\text{cal.}}(\text{\AA})$ $d_{\rm obs.}$ (Å) hkl I/I_0 110 10,87 200 7,69 6,28 6,28 25 211 5,44 13 220 5,44 310 4,86 4,44 222 321 4,11 4,11 100 3,84 20 400 3,84 411 3,62 330 3,44 3,44 15 420 332 3,28 3,28 18 422 3,14 3,14 10 431 3,016 3,016 85 510 45 521 2,808 2,808 440 2,719 2,719 10 530 2,637 6,637 10 433 600 2,563 442 611 2,495 2,495 25 532 8 620 2,432 2,432 2,373 12 541 2,374 2,319 622 631 2,267 2,267 25 444 2,220 2,220 30 534 10 2,175 2,176 710 2,133 8 640 2,133 633 2,093 2,094 45 721 2,055 2,055 10 642 5 2,019 2,019 730 35 1,953 1,953 732 13 800 1,922 1,922 811 1,893 741 820 1,865 644 1,838 15 563 1,838 5 822 1,812 1,812

Dépouillement d'un diagramme de diffraction des rayons-X de δ -CsLaP₄O₁₂ (I $\overline{4}3d$)

Fig. 3. Spectres d'absorption IR de $\delta\text{-RbLaP}_4O_{12}$ (a), et $\delta\text{-CsLaP}_4O_{12}$ (b).

Fig. 4. Spectre d'absorption IR de α -RbLaP₄O₁₂.

Etude cristallographique des composés $M_x^I La(PO_3)_{3+x}$

L'indexation des diagrammes de poudre des différentes variétés cristallines et l'affinement des paramètres de mailles correspondantes ont été réalisés grâce à la comparaison à ceux des espèces isotypes.

L'affinement, par moindres carrés des données angulaires des diagrammes de poudre des quatres variétés cristallines du composé $Rb_2La(PO_3)_4$, du composé $Rb_2La(PO_3)_5$ et des trois variétés cristallines du composé $CsLa(PO_3)_4$, conduit aux valeurs des paramètres de réseau rassemblés dans le Tableau 3.

Les dépouillements des diagrammes de poudre des différentes espèces sont portés dans les Tableaux 4-11.

Spectre IR

Les spectres d'absorption IR des composés $M^1La(PO_3)_4$ et $Rb_2La(PO_3)_5$ (Figs. 3-7) sont compatibles avec les résultats prévus par l'étude cristallographique à savoir l'isomorphisme et la symétrie déterminée des tétraèdres PO_4 . En effet, on relève dans les régions quasi-caractéristiques [21] les bandes d'absorption des métaphosphates à 470-580 cm⁻¹ (δ POP), 700-850 cm⁻¹ (ν_s POP) et à 1000 cm⁻¹ (ν_{as} POP) pour les variétés δ de RbLaP₄O₁₂, CsLaP₄O₁₂ et la variété α -RbLaP₄O₁₂, et les bandes vibrationnelles caractéristiques des polyphosphates (arrangement en chaîne des tétraèdres PO₄) à 380-600 cm⁻¹ (δ POP), à 680-800 cm⁻¹ (ν_s POP) et 900 cm⁻¹ (ν_{as} POP) pour les variétés γ , β de RbLa(PO₃)₄ et CsLa(PO₃)₄ et pour le composé Rb₂La(PO₃)₅.

Fig. 6. Spectres d'absorption IR de γ -RbLa(PO₃)₄ (a), et γ -CsLa(PO₃)₄ (b).

Fig. 7. Spectre d'absorption IR de Rb₂La(PO₃)₅.

BIBLIOGRAPHIE

- 1 H.G. Danielmeyer et H.P. Weber, J. Quantum Electron., 8 (1972) 805.
- 2 A. Bril, G. Blasse, A.H. Gomes de Mesquita et J.A. De Poorter, Philips Tech. Rev., 32 (1971) 125.
- 3 T. Yamada, K. Otsuka et J. Nakano, J. Appl. Phys., 45 (1974) 5096.
- 4 K.K. Palkina, N.N. Chudinova, B.N. Litvin et N.V. Vinogranadova, Izv. Akad. Nauk SSSR, Neorg. Mater., 17 (1981) 586.
- 5 P. Maestro et P. Dougier, Actual. Chim., (1982) 15.
- 6 F. Moktar, M. Trabelsi et N.K. Ariguib, J. Solid State Chem., 38 (1981) 130.
- 7 D. Ben Hassen, N.K. Ariguib, M. Dabbabi et M. Trabelsi, C.R. Acad. Sci., 294 (1982) 375.
- 8 M. Ferid, N.K. Ariguib et M. Trabelsi, Mater. Chem. Phys., 10 (1984) 175.
- 9 D. Ben Hassen, N.K. Ariguib et M. Trabelsi, Thermochim. Acta, 65 (1983) 35.
- 10 M. Férid, N.K. Ariguib et M. Trabelsi, Thermochim. Acta, submitted.
- 11 Ch. Mazières, Ann. Chim., 6 (1961) 575.
- 12 D.E.C. Corbridge, Acta Crystallogr., 9 (1956) 308.
- 13 A. Serra et E. Giesbrecht, J. Inorg. Chem., 30 (1968) 793.
- 14 M.A. Savenkova, B.V. Kubasova, I.V. Mardirosova et E.V. Poletaev, Izv. Akad. Nauk SSSR, Neorg. Mater., 11 (1975) 2200.
- 15 G.A. Bukhalova, R.S. Faustova et M.A. Savenkova, Russ. J. Inorg. Chem., 22 (1977) 778.
- 16 H. Koizumi and J. Nakano, Acta Crystallogr., 33 (1977) 2680.
- 17 S.I. Maksimova, K.K. Palkina, V.B. Loshchenov et V.G. Kuznetsov, Zh. Neorg. Khim., 23 (1978) 2959.
- 18 H. Koizumi et J. Nakano, Acta Crystallogr., 34 (1978) 3320.
- 19 S.I. Maksimova, K.K. Palkina et V.V. Loshchenov, Izv. Akad. Nauk SSSR, 17 (1981) 121.
- 20 K.K. Palkina, S.I. Maksimova et V.G. Kuznetsov, Akad. Nauk SSSR, 14 (1978) 284.
- 21 V.A. Madii, Yu.I. Krasilov, V.A. Kizel, Yu.V. Denisov, N.N. Chudinova et N.V. Vinogradova, Izv. Akad. Nauk SSSR, Neorg. Mater., 14 (1978) 2061.